波音游戏-波音娱乐城赌球打不开

Groundbreaking development in new aerospace material by CityU and NJUST

 

An advanced material developed by City University of Hong Kong (CityU) and Nanjing University of Science and Technology (NJUST) holds great promise for the aerospace industry.
 
The new material’s chief quality is its enhanced capacity for heat resistance, its high tensile strength, and its low density. The new material can withstand temperatures of up to 900°C. It could replace the use of Ni-based superalloys.
 
The team is led by Professor Liu Chain-tsuan, University Distinguished Professor at CityU, and Professor Chen Guang from NJUST. The new alloy marks a milestone in the career of Professor Liu, an area that he has focused on during his academic research.
 
The new titanium-aluminum nickel-base (TiAl+Nb) single crystal alloy created by the team can be used in the turbine engine of an airplane. It not only boosts the efficacy of an airplane, it significantly reduces noise and environmental pollution.
 
“Over the past 20 years, the industry could not produce the TiAl+Nb single crystal alloy at a low cost. We have achieved a groundbreaking development in material research. Our new material could be used for turbine blades and widely applicable in the aerospace manufacturing in the future,” Professor Liu said.
 
The new material is important to this industry because of its heat resistance. When an airplane’s turbine engine turns, it produces extremely high temperatures and uses a lot of fuel.
 
Professor Liu’s achievement has attracted much attention in academic circles and has been published as a cover story in the internationally acclaimed journal Nature Materials.
 
The titanium-aluminum alloy used today was already a light-weight material that could withstand up to only 700°C. But it cannot be used in the centre of a turbine engine where temperatures can hit 1,000 oC.
 
He added that titanium-aluminum alloy is already much better than the nickel-base super alloy developed in the last century because it can reduce the weight of an airplane’s engine by 400 pounds, lower energy losses by 15%, and cut noise and gas emissions by 50%.
 
Professor Liu expects that using the new TiAl+Nb single crystal alloy can further decrease the weight of turbine engines and boost environmental protection.
 
Notes to editors: 
Filename: Photo-1.jpg
Caption: Professor Liu develops an advanced aerospace material.
 
Media enquiries: Emily Law, Communications and Public Relations Office, CityU (Tel: 3442 6819 or 9773 7664)
 
 
To  download photo -- (Remark: Copyrights belong to CityU. Use of the photo(s) for purposes other than reporting the captioned news story is restricted.)

YOU MAY BE INTERESTED

Back to top
澳门百家乐官方网站破解百家乐技巧| 阳宅24山流年吉凶方位| 威尼斯人娱乐网站怎么样| 达孜县| 真人百家乐官网开户须知| 百家乐棋牌外挂| 嘉兴市| 二八杠网| 百家乐路单用处| 百家乐官网长龙怎么预判| 送彩金百家乐的玩法技巧和规则| 百家乐官网视频游戏中心| 百家乐娱乐平台代理佣金| 百家乐官网一般的庄闲比例是多少| 赌球赔率| 3U百家乐游戏| 百家乐官网桌14人| bet365 金融| 赌场游戏| 百家乐平玩法官方网址| 百家乐官网平注法亏损| 百家乐官网投注系统| 立即博百家乐的玩法技巧和规则| 综合百家乐官网博彩论坛| 网络百家乐官网输了很多钱| 广德县| 大发888官方 df888| 威尼斯人娱乐城佣金| 百家乐视频台球游戏| 百家乐官网论坛官网| 川宜百家乐官网分析软件| 威尼斯人娱乐城送彩金| 百家乐破解秘| 云赢百家乐分析| 顶尖百家乐学习| 百乐坊百家乐官网游戏| 赌球论坛| 永利高官网| 一起pk棋牌游戏下载| 百家乐大| 希尔顿百家乐娱乐城 |