波音游戏-波音娱乐城赌球打不开

Kondo cloud finally observed after half-century

 

A physicist from City University of Hong Kong (CityU) plays a major role in the world’s first direct measurement of a Kondo cloud more than 50 years after the initial theory was first expounded.

Dr Ivan Valerievich Borzenets, Assistant Professor in the Department of Physics, has helped to reveal the first experimental evidence of a Kondo cloud.

The Kondo cloud was theorised half a century ago but until now it has not been observed, according to Dr Borzenets, who has worked on the Kondo project as part of an international research team.

This breakthrough in condensed matter physics could contribute to further understanding multiple impurity systems such as high temperature superconductors, he added. High temperature superconductors can be used in a variety of applications such as energy storage system and medical equipment.

The Kondo cloud describes the area around the magnetic impurity where the Kondo effect plays a role. The experiment offers proof that the size, or length, of a Kondo cloud and Kondo temperature are related mathematically. 

This confirmed observation marks an important milestone after more than 55 years since the theory was first postulated by Japanese theoretical physicist Dr Jun Kondo.

“The Kondo temperature is the critical temperature where the Kondo effect starts to play a role,” said Dr Borzenets. In metals, electrical resistance usually falls as the temperature drops. But if there are some magnetic impurities in the metal, resistance will drop at first. When a threshold temperature is reached, resistance will increase as the temperature decreases further.

“We hope the findings can provide insights into the understanding of multiple impurity systems such as Kondo lattices, spin glasses and high transition-temperature superconductors,” explained Dr Borzenets, the lead author of an article titled “Observation of the Kondo screening cloud” published in the latest edition of the prestigious scientific journal Nature.

Following repeated experiments with a device specially developed by the team over a three-year period, the cloud was measured as a few micrometres across. 

It is challenging to isolate and manipulate both a single magnetic impurity and a single cloud. Now, with the instrument developed by the international research team and the application of quantum mechanics, this has been achieved. The impurity was housed in a quantum dot, also referred to as a “conducting island”, that is a just a few hundred nanometres wide. The cloud was confined in a quasi-one dimensional channel (an interferometer), the manipulation of which allowed the team to detect and control the cloud length.

Dr Borzenets was joined on the project by Dr Shim Jeong-min and Professor Sim Heung-sun of the Korea Advanced Institute of Science and Technology; Dr Jason C.H. Chen of the University of Tokyo; Dr Arne Ludwig and Professor Andreas D. Wieck of Ruhr-University Bochum, Germany; and Professor Seigo Tarucha and Dr Michihisa Yamamoto of RIKEN Centre for Emergent Matter Science, Japan.

Notes to editors: 

Filename: Photo_01
Caption: Dr Borzenets plays a major role in the world’s first direct measurement of a Kondo cloud.

Filename: Photo_02
Caption: Schematic illustration of the Kondo cloud detection (graphic design: Dr Shim Jeong-min)


Media enquiries: Eva Choy, Communications and Public Relations Office (Tel: 3442 9325 or 9787 7671)

To download photo -- (Remark: Copyrights belong to CityU. Use of the photo(s) for purposes other than reporting the captioned news story is restricted.)

YOU MAY BE INTERESTED

Back to top
法拉利百家乐官网的玩法技巧和规则 | 狮威百家乐娱乐场| 大发888在线娱乐城21点| 百家乐官网赌博分析网| 多台百家乐的玩法技巧和规则| 百家乐官网是如何骗人的| 免费百家乐奥| 去澳门百家乐官网娱乐城| 大发888组件下载| 杨筠松 24山 图| 财神娱乐城打不开| 百家乐翻天快播粤语| 鸡泽县| 金百家乐的玩法技巧和规则| 米泉市| 华人百家乐博彩论| 赢家百家乐官网的玩法技巧和规则| 安溪县| 百家乐官网破解方法技巧| 大发888捕鱼游戏| 阳宅24山流年吉凶方位| 百家乐官网游戏运营| 威尼斯人娱乐城游戏| 百家乐软件官方| 大发888开户日博备用| 百家乐官网皇室百家乐官网| 菲律宾云顶国际| 致胜百家乐的玩法技巧和规则| 3D乐财网| 高级百家乐桌布| 金沙百家乐娱乐城场| 百家乐官网2号程序| E世博百家乐的玩法技巧和规则| 百家乐官网和21点| 易盈国际娱乐城| 至尊百家乐赌场娱乐网规则| 百家乐官网扑克筹码| 六合彩网上下注| 大发888怎么进不去| 博E百百家乐的玩法技巧和规则 | 百家乐|