波音游戏-波音娱乐城赌球打不开

Smart Mask improves personal and public health by detecting breathing, coughing and speaking

 

Researchers at City University of Hong Kong (CityU) have developed an Internet of Things (IoT) Smart Mask integrating an ultrathin nanocomposite sponge structure-based soundwave sensor, which can detect and classify various respiratory sounds (breathing, coughing and speaking) using deep learning, thus helping to improve personal and public health.

The research is led by Professor Li Wenjung, Chair Professor in the Department of Mechanical Engineering (MNE), Professor Wang Jianping, Professor in the Department of Computer Science (CS), and Dr Yu Xinge, Associate Professor in the Department of Biomedical Engineering (BME). 

Across the globe, the current sentiment is that the COVID-19 virus is becoming endemic, similar to common cold and flu viruses. However, infectious disease experts have warned that we must not be too optimistic and be realistic about the likely levels of death, disability and illness that may be caused by a “COVID-19” endemic phase. It is important to remember that endemicity does not correspond to harmlessness. Malaria, for example, was widely recognised in ancient Greece by the 4th century BC, but it is still considered an endemic disease in almost 90 countries today. Therefore, wearing masks as a common protective measure against the transmission of the coronavirus, or as a fashion accessory with the conventional function of preventing the spread of respiratory infections, such as influenza viruses, could still be very important in densely populated cities for the foreseeable future.

The Smart Mask developed by the CityU team integrates an ultrathin flexible wide-bandwidth soundwave sensor made of carbon nanotube/polydimethylsiloxane (CNT/PDMS) nanocomposites, which is as thin as 400 μm and enables high sensitivity in both static and dynamic pressure measurement ranges – up to 4000 Hz – for tracking, classifying and recognising three different types of respiratory activities – breathing, speaking and coughing – and identifying speech.

Thirty-one human subjects were recruited for the study, from whom respiratory activity was collected while they wore the smart mask. The data were processed and classified using deep-learning methods: namely, a support vector machine and convolutional neural networks. All human subjects had macro recalls above 90% (with a maximum as high as 100%), and the average reached 95.23% for all three types of respiratory sounds, showing stable and robust performance.

“Irregular respiratory activities are key symptoms of respiratory illness and are usually of great importance for diagnosing diseases such as pertussis and asthma,” said Professor Li. “It has already been shown that COVID-19 may lead to notable changes in the voice of infected people. Therefore, our novel IoT Smart Mask enables prolonged and systematic monitoring, screening and diagnosis of several common cough-related diseases.” 

“Presently, researchers use commercial sensors to detect temperature changes and airflow to count the number of coughs, but they cannot capture important physiological information contained in the human voice. Our smart mask is sensitive to both subtle air pressure and high-frequency vibrations and can detect three phrases of coughing,” explained Professor Wang.

“As a potentially low-cost, daily smart wearable device, this new IoT Smart Mask will help personal and public health management of respiratory disease screening, especially for cities with dense populations, such as Hong Kong,” said Dr Yu. 

The research is led by the CityU team but with important contributions from Professor Shen Jiangang’s team from the School of Chinese Medicine of The University of Hong Kong.

The paper was published in the high-impact factor journal Advanced Science.

About City University of Hong Kong

As one of the fastest-growing universities in the world over the last decade, CityU is recognised as a hub for innovation in research and professional education. Our world-class faculty champion the integration of teaching and research and consistently excel across many key international indicators for research excellence. Focusing on our core mission, we are committed to promoting knowledge and contributing to society through outstanding teaching and research.

Media enquiries: Michelle Liu, Communications and Public Relations Office (Tel: 3442 6807 or 6333 9158)

YOU MAY BE INTERESTED

Back to top
环球百家乐娱乐城| 澳门百家乐必胜看| 百家乐视频看不到| 闲和庄百家乐娱乐城| 百家乐官网三路法| bet365娱乐场| 百家乐怎样捉住长开| 百家乐官网娱乐城网站| 百家乐乐赌| 百家乐官网赌场娱乐城大全| 百家乐破解赌戏玩| 长城百家乐游戏| 百家乐官网透视用设备| 威尼斯人娱乐城博彩投注平台 | 新世纪娱乐| 百家乐庄闲机率分析| 澳门百家乐官网要注意啥| bet365网站| 百家乐网上真钱娱乐场开户注册| 91百家乐官网的玩法技巧和规则| 天气| 大发888娱乐城真钱lm0| 百家乐赌博怎么玩| BB百家乐官网HD| 关于百家乐官网切入点| 天博国际娱乐城| 太阳城娱乐正网| 百家乐打法心得| 百家乐玩法说明| 百家乐官网投注外围哪里好| 平邑县| 英皇娱乐| 德州扑克单机版下载| 百家乐平注法攻略| 什么百家乐平注法| 百家乐神仙道礼包| 百家乐官网手论坛48491| 菲律宾百家乐官网开户| 百家乐官网洗码全讯网| 现金梭哈| 上蔡县|