波音游戏-波音娱乐城赌球打不开

CityU develops the world's first-ever 4D printing for ceramics

 

Professor Lu Jian (left), Dr Liu Guo and the research team have developed the world's first-ever 4D printing for ceramics.
Professor Lu Jian (left), Dr Liu Guo and the research team have developed the world's first-ever 4D printing for ceramics.

A research team at City University of Hong Kong (CityU) has achieved a ground-breaking advancement in materials research by successfully developing the world’s first-ever 4D printing for ceramics, which are mechanically robust and can have complex shapes. This could turn a new page in the structural application of ceramics. 

Ceramic has a high melting point, so it cannot be cast or shaped easily, and it is difficult to use conventional laser printing to make ceramics. The existing 3D-printed ceramic precursors, which are usually difficult to deform, also hinder the production of ceramics with complex shapes. 

To overcome these challenges, the CityU team has developed a novel “ceramic ink”, which is a mixture of polymers and ceramic nanoparticles. The 3D-printed ceramic precursors printed with this novel ink are soft and can be stretched three times beyond their initial length. These flexible and stretchable ceramic precursors allow complex shapes, such as origami folding. With proper heat treatment, ceramics with complex shapes can be made. 

The team was led by Professor Lu Jian, Vice-President (Research and Technology) and Chair Professor of Mechanical Engineering, who is a distinguished materials scientist with research interests ranging from fabricating nanomaterials and advanced structural materials to the computational simulation of surface engineering. 

With the development of the elastic precursors, the research team has achieved one more breakthrough by developing two methods of 4D printing of ceramics. 

4D printing is conventional 3D printing combined with the additional element of time as the fourth dimension, where the printed objects can re-shape or self-assemble themselves over time with external stimuli, such as mechanical force, temperature, or a magnetic field. 

In this research, the team made use of the elastic energy stored in the stretched precursors for shape morphing. When the stretched ceramic precursors are released, they undergo self-reshaping. After heat treatment, the precursors turn into ceramics. 

The resultant elastomer-derived ceramics are mechanically robust. They can have a high compressive strength-to-density ratio (547 MPa on 1.6 g cm-3 microlattice), and they can come in large sizes with high strength compared to other printed ceramics. 

“The whole process sounds simple, but it’s not,” said Professor Lu. “From making the ink to developing the printing system, we tried many times and different methods. Like squeezing icing on a cake, there are a lot of factors that can affect the outcome, ranging from the type of cream and the size of the nozzle, to the speed and force of squeezing, and the temperature.” 

It took more than two and a half years for the team to overcome the limitations of the existing materials and to develop the whole 4D ceramic printing system. 

In the first shaping method, a 3D-printed ceramic precursor and substrate were first printed with the novel ink. The substrate was stretched using a biaxial stretching device, and joints for connecting the precursor were printed on it. The precursor was then placed on the stretched substrate. With the computer-programmed control of time and the release of the stretched substrate, the materials morphed into the designed shape. 

In the second method, the designed pattern was directly printed on the stretched ceramic precursor. It was then released under computer-programming control and underwent the self-morphing process.

Video explaining the 4D printing for ceramics

The innovation was published in the latest issue of top academic journal Science Advances under the title “Origami and 4D printing of elastomer-derived ceramic structures”. All research team members are from CityU, including Dr Liu Guo, Research Assistant, Dr Zhao Yan, Senior Research Associate, and Dr Wu Ge, Research Fellow. 

“With the versatile shape-morphing capability of the printed ceramic precursors, its application can be huge!” said Professor Lu. One promising application will be for electronic devices. Ceramic materials have much better performance in transmitting electromagnetic signals than metallic materials. With the arrival of 5G networks, ceramic products will play a more important role in the manufacture of electronic products. The artistic nature of ceramics and their capability to form complex shapes also provide the potential for consumers to tailor-make uniquely designed ceramic mobile phone back plates. 

The 3D-printed ceramic precursors printed with the novel “ceramic ink” are soft and stretchable, enabling complex shapes, such as origami folding.
The 3D-printed ceramic precursors printed with the novel “ceramic ink” are soft and stretchable, enabling complex shapes, such as origami folding.

Furthermore, this innovation can be applied in the aerospace industry and space exploration. “Since ceramic is a mechanically robust material that can tolerate high temperatures, the 4D-printed ceramic has high potential to be used as a propulsion component in the aerospace field,” said Prof Lu. 

Riding on the breakthrough in material and 4D-printing technique advancement, Prof Lu said the next step is to enhance the mechanical properties of the material, such as reducing its brittleness. 

The research was supported by the Major Program of National Natural Science Foundation of China, the Hong Kong Collaborative Research Fund Scheme and Theme-based Research Scheme, the Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center, the Guangdong Provincial Department of Science and Technology, and the Science and Technology Innovation Commission of Shenzhen Municipality.

Contact Information

Back to top
百家乐官网翻天粤语qvod| 肇庆市| 百家乐真钱路怎么看| 六合彩开奖查询| 聚宝盆百家乐官网的玩法技巧和规则| 百家乐娱乐网网| 百家乐官网账号变动原因| 百家乐百家乐论坛| 百家乐官网真钱在线| 试玩百家乐网| 易胜博百家乐官网娱乐城| 大发888游戏平台 46| 百家乐官网规则以及玩法| 金宝博188| 百家乐娱乐平台网| 利都百家乐官网国际娱乐| 大发8888娱乐场下载| 百家乐2号干扰| 彩会百家乐官网游戏| 百家乐下注法| 博狗百家乐官网的玩法技巧和规则 | 百家乐QQ群娱乐| 百家乐官网博娱乐平台赌百家乐官网 | 连环百家乐官网的玩法技巧和规则 | 百家乐官网娱乐城博彩通博彩网| 长顺县| 威尼斯人娱乐城怎样赢| 百家乐官网概率统计| 大发888娱乐场开户| 百家乐大西洋城v| 24楼层风水| 送彩金百家乐官网平台| 金莎国际娱乐| 东京太阳城王子大酒店| 百家乐学院教学视频| 百家乐官网套路| 六合彩预测| 太阳城申博娱乐| 百家乐ag厅投注限额| 24山方向上| 澳门百家乐官网网上赌博|