波音游戏-波音娱乐城赌球打不开

New nanogenerator harvests water energy with slippery surfaces

 

triboelectric nanogenerator

While the consequences of climate change have begun to take their toll, global energy demand has grown at the fastest pace ever in the past decade. Exploring renewable energy alternatives has therefore become more pressing than ever. A recent study led by researchers from City University of Hong Kong (CityU) has developed a new triboelectric nanogenerator (TENG) using a slippery surface to enhance energy harvesting efficiency. The findings may open up a new avenue for the design of energy harvesting devices with better stability and durability.

Among many water energy harvesting approaches, TENGs, which were invented by Professor Wang Zhonglin from the Georgia Institute of Technology in the US in 2012, can convert mechanical energy to electrical energy and have received increasing attention over the past several years. The mechanism behind TENGs is based mainly on the triboelectric effect and electrostatic induction, which take place at either solid–solid or solid–liquid interfaces.

Currently, the solid interface of a solid–liquid TENG is designed to be hydrophobic or superhydrophobic, so that water droplets can be timely repelled to allow dry contact areas for continuous power generation. However, the physiochemical properties of the solid–liquid interfacial materials of conventional superhydrophobic-based TENGs (SHS-TENGs) are reduced when operating in harsh environments. At low temperature and very humid conditions, the nucleation of water droplets, ice or frost eventually results in a frozen surface, which blocks the charge generation. When submerged in water, biofilms form, limiting the longevity and energy efficiency of the device.

To overcome these limitations, a joint research project by CityU, the University of Science and Technology of China, East China Normal University, and the University of Nebraska-Lincoln has developed a new device by combining slippery lubricant-impregnated porous surface (SLIPS) technology with a TENG. In low temperature conditions, the output power of this SLIPS-based TENG (SLIPS-TENG) is at least an order or magnitude higher than that of the conventional SHS-TENG.

triboelectric nanogenerator
The lighter part on the left (indicated by the red circle) is the electrode of the SLIPS-TENG, fabricated by combining the surface with lubricant and a TENG.
triboelectric nanogenerator
The SLIPS-TENG exhibits better stability at low temperature (-3°C) than the SHS-TENG.

The SLIPS technology was invented by scientists at Harvard University in 2011, inspired by pitcher plants. The surface is super slippery, and it can repel various simple and complex liquids, including water, crude oil and blood, quickly restoring liquid-repellency after physical damage and resisting ice adhesion.

In this latest research, the team fabricated the SLIPS by infusing a perfluorinated liquid as a lubricant on the porous PTFE membrane. Then they combined the SLIPS with a TENG, forming a liquid–liquid–solid interface. The SLIPS-TENG exhibits better optical transparency, configurability, self-cleaning, flexibility and power generation stability than conventional TENGs. And it functions well at low temperatures, with more or less the same electric output as it does at room temperature. It can also be used in various wearable and flexible devices.

triboelectric nanogenerator
Schematic drawing of the SLIPS-TENG fabrication process

"We have successfully combined two seemingly different technologies, SLIPS and TENG, and achieved triboelectricity generation in a liquid–liquid interface," said Professor Wang Zuankai, from the Department of Mechanical Engineering at CityU, who led the research. "From a broader perspective, the marriage of SLIPS with TENG technologies can provide a paradigm shift in the design of blue energy devices with longer life and enhanced properties, which make them adaptable to a wide range of working conditions."

Harvesting water energy by SLIPS-TENG at 25°C and -3°C
Harvesting water energy by SLIPS-TENG at 25°C and -3°C

The research findings were published in the Beijing-based National Science Review, in an article titled “SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface”. Professor Wang was the corresponding author. The first co-authors were Xu Wanghuai, joint-PhD student at CityU and the University of Science and Technology of China; Dr Zhou Xiaofeng, from East China Normal University; and Hao Chonglei, from CityU. Other authors include Professor Michael Leung Kwok-hi, from the School of Energy and Environment; and Dr Yang Zhengbao, from the Department of Mechanical Engineering at CityU.

The research was supported by funding from the Research Grants Council of Hong Kong, the Shenzhen Science and Technology Innovation Council, and CityU.

DOI number: 10.1093/nsr/nwz025

Related Stories:

New droplet-based electricity generator: A drop of water generates 140V power, lighting up 100 LED bulbs

Droplet transport: New mechanism moving droplets at record-high speed and long distance without extra power

Subscribe to newsletter

 

Contact Information

Back to top
揭东县| 绿春县| 百家乐官网破解软件真的有用吗| 风水24向| 真人百家乐套红利| 推二八杠技巧| 神娱乐百家乐的玩法技巧和规则 | 百家乐翻天| 视频百家乐官网平台出租| 百家乐官网赌博程序| 百家乐大老娱乐| 大发888客户端下载| 百家乐官网散台| 格尔木市| 千亿娱百家乐官网的玩法技巧和规则 | 大发888娱乐场存款| 大发888zhldu| 百家乐官网赢足球博彩皇冠| 百家乐客户端皇冠| 大发888官网是多少| 大家旺百家乐娱乐城| 大发888网页游戏平台| 最新百家乐官网双面数字筹码| 百家乐百胜注码法| 单张百家乐官网论坛| 百家乐网络游戏平台| 百家乐视频官方下载| 徐闻县| 百家乐官网赌博博彩赌博网| 百家乐职业打| 真人百家乐| 百家乐技巧平注常赢法| 百家乐官网高手技巧| 南京百家乐的玩法技巧和规则| 百家乐官网怎么做弊| 大发888游戏破解软件| 百家乐庄家提成| 百家乐官网AG| bet365 uo15| 百家乐韩泰阁| 华泰百家乐官网的玩法技巧和规则|