波音游戏-波音娱乐城赌球打不开

Technology breakthrough: doubling the charging-recharging cycle of lithium batteries

 

The promotion of electric cars has dramatically increased the demand for lithium-ion batteries. However, cobalt and nickel, the main cathode materials for the batteries, are not abundant. If the consumption continues, it will inevitably elevate the costs in the long run, so scientists have been actively developing alternative materials. A joint research team co-led by a scientist from City University of Hong Kong (CityU) has developed a much more stable, manganese-based cathode material. The new material has higher capacity and is more durable than the existing cobalt and nickel cathode materials - 90% of capacity is retained even when the number of charging-recharging cycles doubled. Their findings shed lights on developing low cost and high efficiency manganese-based cathode materials for lithium-ion batteries.

The research team was co-led by Dr Liu Qi, Assistant Professor in the Department of Physics (PHY) at CityU, together with scientists from Nanjing University of Science and Technology  (NUST), and the Institute of Physics, Chinese Academy of Sciences (IOPCAS). Their findings have been published in the scientific journal Nature Sustainability, titled “LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries”.

Technology bottleneck of manganese-based cathode materials: low capacity retention

Lithium-ion batteries are now widely used in cell phones and electric cars. Most of the cathode materials contain cobalt and nickel, which are both not abundant and create pollution to the environment in the exploitation process. Therefore, scientists are searching for alternative cathode materials, for example, manganese (Mn).

Among the leading manganese-based candidates, LiMnO2 is cost-effective, more environmentally friendly with larger theoretical capacity. However, it suffers from poor stability during the charging-recharging cycle. Breaking of grains, rapid structural degradation and serious dissolution of manganese may happen. Severe capacity decay upon cycling is resulted and therefore shortens its durability, hindering the application of LiMnO2 in the commercialised lithium-ion batteries. 

Jahn-Teller distortion needs to be suppressed

Dr Liu, an expert in developing cathode materials for lithium-ion batteries, pointed out that the structural instability of manganese-based materials is mainly caused by the Jahn-Teller distortion in their atomic structure. Upon discharging, the Mn-O bond in LiMnO2 will be elongated, which is called Jahn-Teller distortion. Since there is a long-range collinear orbital ordering of the electron orbits of the Mn3+ ions without disturbance, a strong cooperative Jahn–Teller distortion is resulted. Their atomic structures are easily distorted.

Dr Liu and his team tackled the problem by applying interfacial engineering in the atomic structure, which disturbs the long-range collinear orbital ordering and suppresses a large scale of Jahn–Teller distortion. 

Jahn-Teller distortion and its orthogonal orbital ordering
Figure b shows the Jahn-Teller distortion of the material. Figure c and d show the heterostructure enables interfacial orbital ordering, which suppresses the Jahn–Teller distortion. (Photo source: DOI number: 10.1038/s41893-020-00660-9)

 

Figure g
This image shows the interfacial orbital ordering found in the spinel-layered interface. (Photo source: DOI number: 10.1038/s41893-020-00660-9)

Structural stability enhanced by interfacial engineering

The team prepared the spinel–layered (heterostructured) LiMnO2 via in situ electrochemical conversion from spinel Mn3O4 nanowall arrays. It is found that the electron orbits are oriented almost perpendicular to each other between the spinel and layered boundaries, resulted in the  interfacial orbital ordering. “This has caused a disturbance of the long-range collinear orbital ordering, therefore Jahn–Teller distortion is suppressed,” explained Dr Liu.

Their experiment results showed that Jahn–Teller distortion was effectively suppressed with this heterostructure design. The degrees of distortion of the layered and spinel phase was only 2.5% and 5.5% respectively, while layered LiMnO2 and spinel LiMnO2 showed much greater degrees of distortion of 18% and 16% respectively. This implies that the heterostructured LiMnO2 exhibited much higher structural stability. The team also found that the volume changes from the spinel and layered phases counteract with each other, leading to a minimal total volume change for the material. As a result, the material exhibited superior structural stability.

Long cycle life 

“The capacity of the LiCoO2 cathode material currently applied in electronic products like smartphones is about 165mAh/g, while our LiMnO2 cathode material has already achieved a capacity as high as 254.3 mAh g?1, which is much higher,” Dr Liu elaborated. “It is difficult for commercial LiCoO2 to maintain 90% capacity even at 1,000 cycles. And our material has achieved high capacity retention of 90.4% after 2,000 cycles, demonstrating a long cycle life,” he added.

They are the first team to deploy interfacial orbital ordering to suppress the Jahn–Teller distortion. This novel method facilitated the development of sustainable Mn-rich cathode materials, in the hope of applying them in sustainable and commercialised energy storage devices. “We look forward to cost reduction in energy storage technology which can promote the energy structure in moving towards sustainability. Our material can potentially replace the currently commercialised cobalt materials for applications such as electronics and electric cars,” concluded Dr Liu.

Dr Liu, Dr Gu Lin, the researcher from IOPCAS, and Professor Xia Hui from NUST are the corresponding authors of the paper. The co-first authors are postdoc Zhu Xiaohui from NUST, Dr Meng Fanqi and Dr Zhang Qinghua from IOPCAS. Other team members included Dr Zhu He, Postdoctoral Fellow from PHY at CityU, as well as collaborating researchers come from NUST, Sun Yat-Sen University, and Argonne National Laboratory, USA.

Dr Liu and Zhu He
Dr Liu Qi, Assistant Professor in CityU’s Department of Physics and his research team member Dr Zhu He, with lithium-ion batteries in their hands. (Photo source: City University of Hong Kong) 
 

The study received funding support from including the National Natural Science Foundation of China, the National Key R&D Program of China, the Fundamental Research Funds for the Central Universities, Chinese Academy of Sciences and Shenzhen Science and Technology Innovation Commission under the grant Shenzhen-Hong Kong Innovation Circle Category D Project.

DOI number: 10.1038/s41893-020-00660-9 

 

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
云鼎百家乐现金网| 百家乐ipone| 乐百家百家乐官网游戏| 网络百家乐官网骗局| 保单百家乐游戏机| 边城棋牌游戏下载| 大发888登录下载| 济阳县| 至尊百家乐停播| 百家乐官网节目视频| 百家乐改单软件| 百家乐官网什么平台好| 金都百家乐的玩法技巧和规则| 澳门赌百家乐官网能赢钱吗| 新时代百家乐娱乐城| 美高梅百家乐官网娱乐城| 威尼斯人娱乐城老lm0| 百家乐出庄概率| 大发888yulecheng| 娱百家乐下载| 赌博百家乐官网弱点| 在线百家乐技巧| 网络百家乐官网真人游戏| 大发888真人官网| 百家乐2棋牌作弊软件| 百家乐官网庄6点| 现金棋牌游戏平台 | 百家乐QQ群娱乐| 百家乐国际娱乐| 网上百家乐官网赌法| 大发888开户注册哪家好| 网络百家乐棋牌| 太阳城77scs| 百家乐打印机破解| 大西洋百家乐官网的玩法技巧和规则 | 百家乐赔率技巧| 百家乐官网规则博彩正网| 大发888注册送彩金| 网上百家乐有人赢过嘛| 百家乐仿水晶筹码| 大发888游戏平台 送1688元礼金领取lrm|