波音游戏-波音娱乐城赌球打不开

Technology breakthrough: doubling the charging-recharging cycle of lithium batteries

 

The promotion of electric cars has dramatically increased the demand for lithium-ion batteries. However, cobalt and nickel, the main cathode materials for the batteries, are not abundant. If the consumption continues, it will inevitably elevate the costs in the long run, so scientists have been actively developing alternative materials. A joint research team co-led by a scientist from City University of Hong Kong (CityU) has developed a much more stable, manganese-based cathode material. The new material has higher capacity and is more durable than the existing cobalt and nickel cathode materials - 90% of capacity is retained even when the number of charging-recharging cycles doubled. Their findings shed lights on developing low cost and high efficiency manganese-based cathode materials for lithium-ion batteries.

The research team was co-led by Dr Liu Qi, Assistant Professor in the Department of Physics (PHY) at CityU, together with scientists from Nanjing University of Science and Technology  (NUST), and the Institute of Physics, Chinese Academy of Sciences (IOPCAS). Their findings have been published in the scientific journal Nature Sustainability, titled “LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries”.

Technology bottleneck of manganese-based cathode materials: low capacity retention

Lithium-ion batteries are now widely used in cell phones and electric cars. Most of the cathode materials contain cobalt and nickel, which are both not abundant and create pollution to the environment in the exploitation process. Therefore, scientists are searching for alternative cathode materials, for example, manganese (Mn).

Among the leading manganese-based candidates, LiMnO2 is cost-effective, more environmentally friendly with larger theoretical capacity. However, it suffers from poor stability during the charging-recharging cycle. Breaking of grains, rapid structural degradation and serious dissolution of manganese may happen. Severe capacity decay upon cycling is resulted and therefore shortens its durability, hindering the application of LiMnO2 in the commercialised lithium-ion batteries. 

Jahn-Teller distortion needs to be suppressed

Dr Liu, an expert in developing cathode materials for lithium-ion batteries, pointed out that the structural instability of manganese-based materials is mainly caused by the Jahn-Teller distortion in their atomic structure. Upon discharging, the Mn-O bond in LiMnO2 will be elongated, which is called Jahn-Teller distortion. Since there is a long-range collinear orbital ordering of the electron orbits of the Mn3+ ions without disturbance, a strong cooperative Jahn–Teller distortion is resulted. Their atomic structures are easily distorted.

Dr Liu and his team tackled the problem by applying interfacial engineering in the atomic structure, which disturbs the long-range collinear orbital ordering and suppresses a large scale of Jahn–Teller distortion. 

Jahn-Teller distortion and its orthogonal orbital ordering
Figure b shows the Jahn-Teller distortion of the material. Figure c and d show the heterostructure enables interfacial orbital ordering, which suppresses the Jahn–Teller distortion. (Photo source: DOI number: 10.1038/s41893-020-00660-9)

 

Figure g
This image shows the interfacial orbital ordering found in the spinel-layered interface. (Photo source: DOI number: 10.1038/s41893-020-00660-9)

Structural stability enhanced by interfacial engineering

The team prepared the spinel–layered (heterostructured) LiMnO2 via in situ electrochemical conversion from spinel Mn3O4 nanowall arrays. It is found that the electron orbits are oriented almost perpendicular to each other between the spinel and layered boundaries, resulted in the  interfacial orbital ordering. “This has caused a disturbance of the long-range collinear orbital ordering, therefore Jahn–Teller distortion is suppressed,” explained Dr Liu.

Their experiment results showed that Jahn–Teller distortion was effectively suppressed with this heterostructure design. The degrees of distortion of the layered and spinel phase was only 2.5% and 5.5% respectively, while layered LiMnO2 and spinel LiMnO2 showed much greater degrees of distortion of 18% and 16% respectively. This implies that the heterostructured LiMnO2 exhibited much higher structural stability. The team also found that the volume changes from the spinel and layered phases counteract with each other, leading to a minimal total volume change for the material. As a result, the material exhibited superior structural stability.

Long cycle life 

“The capacity of the LiCoO2 cathode material currently applied in electronic products like smartphones is about 165mAh/g, while our LiMnO2 cathode material has already achieved a capacity as high as 254.3 mAh g?1, which is much higher,” Dr Liu elaborated. “It is difficult for commercial LiCoO2 to maintain 90% capacity even at 1,000 cycles. And our material has achieved high capacity retention of 90.4% after 2,000 cycles, demonstrating a long cycle life,” he added.

They are the first team to deploy interfacial orbital ordering to suppress the Jahn–Teller distortion. This novel method facilitated the development of sustainable Mn-rich cathode materials, in the hope of applying them in sustainable and commercialised energy storage devices. “We look forward to cost reduction in energy storage technology which can promote the energy structure in moving towards sustainability. Our material can potentially replace the currently commercialised cobalt materials for applications such as electronics and electric cars,” concluded Dr Liu.

Dr Liu, Dr Gu Lin, the researcher from IOPCAS, and Professor Xia Hui from NUST are the corresponding authors of the paper. The co-first authors are postdoc Zhu Xiaohui from NUST, Dr Meng Fanqi and Dr Zhang Qinghua from IOPCAS. Other team members included Dr Zhu He, Postdoctoral Fellow from PHY at CityU, as well as collaborating researchers come from NUST, Sun Yat-Sen University, and Argonne National Laboratory, USA.

Dr Liu and Zhu He
Dr Liu Qi, Assistant Professor in CityU’s Department of Physics and his research team member Dr Zhu He, with lithium-ion batteries in their hands. (Photo source: City University of Hong Kong) 
 

The study received funding support from including the National Natural Science Foundation of China, the National Key R&D Program of China, the Fundamental Research Funds for the Central Universities, Chinese Academy of Sciences and Shenzhen Science and Technology Innovation Commission under the grant Shenzhen-Hong Kong Innovation Circle Category D Project.

DOI number: 10.1038/s41893-020-00660-9 

 

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
大发888娱乐官网| 久胜娱乐| 百家乐真人投注网站| 百家乐娱乐平台代理佣金| 波克城市棋牌下载| 澳门百家乐官网娱乐城网址| 君怡百家乐官网的玩法技巧和规则 | 至尊百家乐官网年代| 百家乐网娱乐城| 大发888真人新浪微群| 百家乐官网双面数字筹码| 百家乐路单资料| 德晋百家乐的玩法技巧和规则 | 安桌百家乐游戏百家乐| 新时代娱乐城| 24天星吉凶| 澳门百家乐网上赌博| 太阳城巧克力社区| 澳门百家乐官网心| 大发888 登陆不上| 百家乐官网专打单跳投注法| 阿拉善左旗| 老虎百家乐官网的玩法技巧和规则 | 大发888网页版登陆| 赌博游戏机| 沙龙开户| 百家乐单人操作扫描道具| 浩博百家乐官网娱乐城| 百家乐单机版的| 百家乐官网赌博公司| 六合彩开奖查询| 蓝盾百家乐官网具体玩法技巧| 太阳城宾馆| 百家乐官网六手变化混合赢家打法| 免费百家乐预测工具| 网络百家乐官网会输钱的多吗| 铜梁县| 澳门百家乐图形| 玩百家乐官网新2娱乐城| 亿酷棋牌官方下载| 免水百家乐官网的玩法技巧和规则|