波音游戏-波音娱乐城赌球打不开

A novel, space-time coding antenna developed at CityU promotes 6G and secure wireless communications

 

A research team co-led by a scientist at City University of Hong Kong (CityU) has developed a novel antenna that allows manipulation of the direction, frequency and amplitude of the radiated beam, and is expected to play an important role in the integration of sensing and communications (ISAC) for 6th-generation (6G) wireless communications. 

The structure and characteristics of traditional antennas cannot be changed once fabricated. However, the direction, frequency, and amplitude of the electromagnetic waves from this new-generation antenna, which is called a “sideband-free space-time-coding (STC) metasurface antenna”, can be changed through space-time coding (i.e. software control), enabling great user flexibility.

The key to this innovative feature is that the response of the metasurface (artificial, thin-sheet material with sub-wavelength thickness and made of several sub-wavelength meta-atoms) can be changed by switching the meta-atoms on its surface between radiating and non-radiating states, like turning on and off switches, by controlling the electric current. This allows the STC metasurface antenna to realize complicated wave manipulation in the space and frequency domains through software control, and to create a desired radiation pattern and a highly directed beam.

coding antenna
A significant feature of the new-generation antenna is that the direction, frequency, and amplitude of the radiated beam from the antenna can be changed through space-time coding software control. Photo credit: City University of Hong Kong

Professor Chan Chi-hou, Acting Provost and Chair Professor of Electronic Engineering in the Department of Electrical Engineering at CityU, who led the research, highlighted that the antenna relies on the successful combination of two research advances, namely amplitude-modulated (AM) leaky-wave antennas and space-time coding techniques.

Dr Wu Gengbo, postdoctoral fellow in the State Key Laboratory of Terahertz and Millimeter Waves (SKLTMW) at CityU, first proposed the new concept of AM leaky-wave antennas in 2020 in his PhD studies at CityU. “The concept provides an analytical approach to synthesize antennas with the desired radiation patterns for different specific uses by simply changing the antennas’ shape and structure,” explained Dr Wu.

But as with other antennas, once the AM leaky-wave antenna is fabricated, its radiation characteristics are fixed. At about that time, Dr Dai Junyan, from a research group led by Academician Cui Tiejun and Professor Cheng Qiang, from Southeast University at Nanjing, China, who pioneered STC technologies, joined Professor Chan’s group at CityU. “Dr Dai’s expertise in space-time coding and digital metasurfaces to dynamically reconfigure antenna performance added a new, important dimension to the antenna research at the SKLTMW,” said Professor Chan, who is also Director of the SKLTMW at CityU.

coding antenna
The radiated beam of the STC metasurface antenna can be used for real-time imaging and treated as a type of radar to scan the environment and feedback data.Photo credit: City University of Hong Kong

 

Moreover, the time modulation of electromagnetic waves on metasurfaces usually generates unwanted harmonic frequencies, called sidebands. These sidebands carry part of the radiated electromagnetic wave energy and interfere with the useful communication channels of the antenna, leading to “spectrum pollution”. But Professor Chan and his team proposed a novel design, which makes use of a waveguide (a line for transmitting electromagnetic waves by successive reflection from the inner wall) and successfully suppressed the undesired harmonics, achieving a high-directivity beam and enabling secure communication.  

“With the AM leaky-wave antenna and space-time coding technologies, we achieve the designated radiation characteristics by controlling the on-off sequences and duration of the ‘switches’ on the antenna through software,” said Professor Chan.

“A high-directivity beam can be generated with the new antenna, allowing a wide range of radiation performance without having to redesign the antenna, except for using different STC inputs,” added Dr Wu. 

The energy from the radiated beam of the STC metasurface antenna can be focused to a focal point with fixed or varying focal lengths, which can be used for real-time imaging and treated as a type of radar to scan the environment and feedback data. “The invention plays an important role in the ISAC for 6G wireless communications,” Professor Chan explained. “For example, the radiated beam can scan a person and create an image of the person, allowing mobile phone users to talk to each other with 3D hologram imaging. It also performs better against eavesdropping than the conventional transmitter architecture.”

The findings were published in the prestigious journal Nature Electronics under the title “Sideband-Free Space-Time-Coding Metasurface Antennas”.

Dr Wu and Dr Dai are the co-first authors of the paper, and Dr Dai, Professor Cheng, Academician Cui, and Professor Chan are the corresponding authors.

“Without the collaboration and complementary expertise of the two research teams at CityU and Southeast University, we could not have achieved these research results,” Professor Chan continued. “We hope that the new-generation antenna technology will become more mature in the future and that it can be applied to smaller integrated circuits at lower cost and in a wider range of applications.”

Professor Chan Chi-hou (left), Dr Wu Gengbo, both from the State Key Laboratory of Terahertz and Millimeter Waves at City University of Hong Kong, have developed a new-generation antenna together with researchers at Southeast University. Photo credit: City University of Hong Kong
Professor Chan Chi-hou (left), Dr Wu Gengbo, both from the State Key Laboratory of Terahertz and Millimeter Waves at City University of Hong Kong, have developed a new-generation antenna together with researchers at Southeast University.
Photo credit: City University of Hong Kong

The research of the CityU team was supported by the Hong Kong Research Grants Council, under the Theme-Based Research Scheme, and the Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication.

 

 

Contact Information

Back to top
百家乐官网代理商博彩e族| bet365主页| 188金宝博| 虞城县| 黎城县| 广东百家乐官网桌布| 机器百家乐官网软件| 百家乐看点打法| 怎么玩百家乐的玩法技巧和规则 | 海威百家乐官网赌博机| 百家乐官网怎么完才能嬴 | 棋牌游戏开发公司| 阿拉善右旗| 澳门百家乐官网图形| 百家乐下注口诀| 威尼斯人娱乐网官网| 网上真钱赌博| 百家乐官网博百家乐官网| 澳门赌百家乐打法| 百家乐游戏源码手机| 娱乐城送18元体验金| 免费百家乐官网在线| 冠军百家乐现金网| 威尼斯人娱乐平台反| 邓州市| 成都百家乐官网的玩法技巧和规则| 百家乐官网真人游戏网| 利高百家乐官网的玩法技巧和规则| 南京百家乐赌博现场被抓| 棋牌评测网站| 百家乐官网游戏作弊| 金城百家乐玩法平台| 顶级赌场网址| 百家乐官网单双打法| 百家乐怎么玩啊| 大发888非法吗| 百家乐官网路单怎样| 十三张百家乐的玩法技巧和规则| 百家乐网真人真钱群| 金贊娱乐城| 百家乐美女视频聊天|