波音游戏-波音娱乐城赌球打不开

Vector developed by CityU researcher holds promise for cancer therapy

Christina Wu

 

A novel gene vector developed by Jin Weihong, a PhD student from the Department of Physics and Materials Science at City University of Hong Kong (CityU), enhances the efficiency of delivering gene therapy and chemotherapy drugs into cancer cells, bringing new hope for cancer patients.

The results were evident in clinical trials on mice. The tumours in mice treated with the vector were significantly smaller and the tumour growth was dramatically suppressed during the 17 days of observation, according to Jin’s research, which is being conducted in collaboration with Zhejiang University. 

Her discovery was introduced in a paper titled “Improvement of biomaterials properties using plasma-based technology”, which brought her the Young Scientist Award and cash prize from the European Materials Research Society (E-MRS) during the E-MRS meeting in Lille, France, in May 2015.

Gene therapy is a promising strategy for the treatment of cancer and various inherited diseases. Its major objective is to transfer naked therapeutic genes, such as DNA, small interfering RNA (siRNA), messenger RNA (mRNA), and microRNA (miRNA) via a vector to the targeted tissues, compensating for abnormal genes to make a beneficial protein.

However, the naked therapeutic genes are rapidly degraded by nucleases because living organisms are generally well protected against invasion of foreign materials.

Vectors such as cationic polymers are attractive due to their low immunogenicity, large-scale production, large carrying capacity, and possible modifications. However, their delivery efficiency is typically low.

Under the supervision of Professor Paul Chu Kim-ho, CityU’s Chair Professor of Materials Engineering, Jin developed a novel vector by doping a rare-earth element, neodymium, into cationic polymer using plasma-based technology, achieving excellent delivery of DNA into cells with low cytotoxicity.

This novel vector exhibits a transfection efficiency of 58.6%, which is dramatically higher than the vector without doping neodymium (12% transfection efficiency), and the commercial transfection agent (24% transfection efficiency).

Jin further proposed three-layered multifunctional nanocarriers loaded with multi-drug resistance gene (MDR-1) and doxorubicin, a chemotherapy drug, to achieve the synergistic anti-cancer effect of siRNA and chemotherapeutic drugs.

Chemotherapeutic drugs and siRNA were delivered to the tumour-bearing mice via three-layered multifunctional nanocarriers. The tumour growth rate decreased during the 17 days of observation and there was almost no obvious tumour growth thereafter, indicating significantly effective anti-tumour therapy in a mouse tumour model.

“I would like to thank CityU for creating an environment conducive to research and providing first-class facilities, which have made my discovery possible. I would also like to express my gratitude to Professor Chu for his guidance and advice over the years,” Jin said.

The strategy proposed in this study sheds new light on the roles of plasma technology and metal elements in the development of a delivery system for the enhancement of cancer therapy.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
大世界百家乐娱乐城| 德州扑克现金桌视频| 百家乐能作弊吗| 全讯网bbin888.com| 荔波县| 五星百家乐官网的玩法技巧和规则| 百家乐7scs娱乐场| 折式百家乐官网赌台| 百家乐官网千术道具| 网上百家乐信誉| 太阳城在线| 香港百家乐赌场| 射阳县| 澳门百家乐技巧| 赌百家乐官网的高手| 百家乐网上最好网站| 大发888国际娱乐平台| 网上百家乐官网网站导航| 百家乐在线赌场| 速博娱乐| 棋牌百家乐赢钱经验技巧评测网| 百家乐官网获胜秘决| 百家乐官网群号| 德州扑克游戏网站| 百家乐有哪几种| 百家乐官网最长的闲| 百家乐大路图| AG百家乐官网大转轮| 大发888官网客户端| 百家乐赌博出千| 网络百家乐官网的破解| 宝博百家乐娱乐城| 新思维百家乐官网投注法| 大发888网页版下载| 百家乐赌场| 试玩百家乐帐| 百家乐官网必赢外挂软件| 333娱乐城| 威尼斯人娱乐城怎么样| 百家乐有多少网址| e世博百家乐官网技巧|