波音游戏-波音娱乐城赌球打不开

What is Long non-coding RNA (lncRNA)?

 

Long non-coding RNA (lncRNA) is a large and diverse class of RNA (ribonucleic acid) molecules which has become a growing focus of cancer genomics studies in recent years. In this article, we will explain what lncRNA is and its functions. It is known that the expression level (cellular abundance) of some lncRNAs is associated with disease onset or development, but the mechanism remains unknown. Scientists are trying to explore the mechanism in the hope of developing medical treatments.

What is lncRNA? 

The central dogma of molecular biology is “DNA (deoxyribonucleic acid) makes RNA, RNA makes proteins, and proteins make us”. The process by which DNA is “copied” to RNA is called transcription, and that by which RNA is used as a template to make proteins is called translation.

The human genome contains over 3 billion base pairs of DNA, of which 70% is transcribable into RNA. However, only less than 2% of these RNAs can be used as a template to translate into proteins, which are called “coding RNA”. The vast majority are “non-coding RNA” (ncRNA).

There are different classes of ncRNA, participating in different cellular processes. The one with a length of over 200 nucleotides (the building block of DNA and RNA) is called long non-coding RNA (lncRNA).

What are the functions of lncRNA?

Many studies have found that lncRNA participates in a variety of biological processes, for example, to assemble protein complex, or to regulate coding RNA translation, etc.

Scientists have been actively researching on the functions of lncRNA and so far have revealed many. We can divide these functions into two major categories: 1) assemble proteins; 2) compete for binding with other non-coding RNAs.

1. Assemble proteins

Different lncRNAs have been found associated with many different proteins. The interaction through lncRNAs’ bindings with proteins will determine the lncRNA functions. For example, lncRNA facilitates the binding of transcription factors, a type of protein, to the genome and regulates the expression level of the targeted gene. The transcription factor binding is like a switch to control how much genetic information is “copied” to RNA.  See panel C of the below figure.

lncRNA
Figure source:  DOI number: 10.3389/fmed.2015.00023

 

To help understand the functions of lncRNA, a research led by City University of Hong Kong scientists has developed a novel detection method to identify binding proteins of lncRNAs in the living cells.

2. Compete for binding with other non-coding RNA

We know that lncRNA can also compete with messenger RNAs (mRNAs, the molecule that will end up making one specific protein) or circular RNA (circRNA) for binding with microRNA (miRNA, a small non-coding RNA molecule containing about 22 nucleotides). When microRNA binds to lncRNA instead of binding to mRNA, the abundance of mRNA gets increased, and the expression level of genes is regulated. See panel H of the above figure.

In addition to the above two examples, there are also other functions of lncRNA (see the other panels in the above figure). Scientists are still working very hard to explore.

How is lncRNA related to different kinds of diseases? 

In some diseases, particularly certain types of cancers, some specific lncRNA expression will get increased. For example:

1) in some of the liver cancer patients, hepatocyte cellular abundance of lncRNA DANCR (Differentiation antagonizing non-protein coding RNA) is significantly higher than the people without liver cancer;

2) in lung cancer, the expression level of lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is associated with its prognosis. Sometimes, the level of MALAT1 can be considered as a biomarker for lung cancer metastasis.

However, the detailed molecular mechanisms remain elusive.

What is the relationship between IncRNA & microRNA (miRNA)?

From panel H of the figure above, we can see that lncRNA sometimes competes with mRNA or circRNA for binding to regulatory miRNA and therefore reduces miRNA's availability to its real target (i.e. mRNA or circRNA). So lncRNA sometimes can be considered as “traps” for miRNA, as a natural process used by cells to regulate the abundance of miRNA.

Reference:

Subscribe to newsletter

 

 

聯(lián)絡(luò)資料

Back to top
百家乐官网太阳城球讯网| 在线百家乐有些一| 澳门在线游戏| 博彩百家乐官网五2013124预测| 注册娱乐城送彩金| 成都百家乐官网牌具| 博彩游戏机| 钱柜百家乐官网娱乐城| 百家乐群dmwd| 电子百家乐官网假在线哪| 娱乐城送体验金| 最新百家乐出千赌具| 于田县| 赌场百家乐规则| 皇冠百家乐官网赢钱皇冠| 开户娱乐城送20彩金| 赌博百家乐官网的玩法技巧和规则| 澳门新世纪娱乐城| 一筒百家乐的玩法技巧和规则| 怎么赢百家乐的玩法技巧和规则 | 三公百家乐官网在哪里可以玩| 百家乐官网U盘下载| 百家乐园试玩| 属虎属鼠做生意可以吗| 百家乐官网平技巧| 博九娱乐网| 7298棋牌官网| 百家乐平台送彩金| 百家乐怎么稳赚| 百家乐官网画面方法| 百家乐官网览| 百家乐仿水晶筹码| 电玩百家乐官网的玩法技巧和规则| 项城市| 顶旺娱乐| 德州扑克辅助软件| 百家乐官网赌博论谈| 美国百家乐官网怎么玩| 真钱棋牌导航网| 东方夏威夷娱乐| 威尼斯人娱乐城代理申请|